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The heat t r ans fe r  that accompanies  vapor condensation on the:surface plane of a supercooled fluid 
jet expelled at a high velocity into a vapor-f i l led  space is studied analytically.  

The concept of expelling a cold fluid jet into a gas-f i l led space is used in a number of technological 
p r o c e s s e s  as well as in jet apparatus (injectors) and heat exchangers .  The current  interest  in the study of 
physical  phenomena occurr ing at the jet surface is explained by the high intensity of heat- ,  m a s s - ,  and m o -  
men tum- t r ans f e r  f rom the vapor to the fluid. Of par t i cu la r  interest  for pract ica l  technological design is the 
determination of the coefficient of heat t r ans fe r  of the vapor with a moving fluid, with allowance for the 
phase transi t ion at the sur face .  A s imi la r  problem was f i rs t  studied in [1] in a boundary layer  approxima-  
tion for the case of a "motionless" vapor-filled space, within the framework of the "old" Prandtl mixing path 

theory. Later, the condensation of moving vapor on a cold fluid jet was studied in [2]. Exact determination 

of the turbulent structure coefficient of the jet is currently not possible, owing to a lack of experimental 
data and the complexity of the physical processes in the turbulent mixing layer accompanied by phase tran- 

sition at the surface. The use of an indicated empirical constant obtained from tests with homogeneous 
incompressible mixing layers leads to results nearly twice the experimental values [3]. This discrepancy 

was to be expected, since even a difference in the density of the mixing flows alone leads to pronounced 
changes of every single mixing-layer parameter [4]. The influence of the turbulent-structure parameter 
on the heat-transfer intensity in the condensation of vapor on a cold fluid jet is studied in the present paper. 

The following problem (Fig. i) is examined. A cold fluid with given and constant thermophysical 

parameters occupies the lower half-space and moves at a constant velocity Uflo w. Owing to condensation, 
a turbulent mixing layer develops at the boundary with the vapor-filled space. It is assumed that complete 

instantaneous condensation of the vapor occurs at the upper boundary of the mixing layer. This makes it 
possible to examine the resulting flow in an incompressible-fluid approximation, without considering the 

density of the heat sources in the boundary layer. The concept of a "mixing-layer boundary" is purely con- 

ditional, since the actual boundary between the fluid and the vapor varies randomly in time. Exact deter- 

mination of the boundary conditions requires knowledge of the correlations between the transfer param- 

eters and the instantaneous position of the elementary portion of the boundary in space. Since there is a 
complete lack of experimental data on this question, it is assumed that the "effective" boundary of con- 
densation is a certain plane at which the corresponding laws of mass, momentum, and energy flow density 
are fulfilled. The lower boundary of the mixing layer is defined similarly. 

It is further assumed that the vapor has given and constant thermophysical parameters and that it 
moves normal to the condensation surface at a velocity Vva p. 

This formulation of the problem corresponds to the condensation of vapor on a fluid jet expelled from 

a nozzle, whereas the formulation of the problem in [i] corresponds more to a cold jet expelled from a hole 
in a smooth wall. 

The abscissa axis is taken along the condensation boundary. Usually, the direction of the longitudinal 
boundary-layer axis coincides with that of the main-flow velocity. However, for small condensation angles (~ 

1 to 5 o), the question of selecting the system of coordinates is not essential from the viewpoint of an exact 
description of the flow, since boundary-layer theory itself is an approximate model of the actual flow. In 
the system of coordinates selected, the boundary conditions can be expressed in a much simpler way. 
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Fig. 2 
Fig. 1. Schematic drawing of j e t  boundary layer. 

Fig. 2. Plot of tanfi and ~ vs the heat parameter K: i) a = 0.08; 2) 0.i0; 3) 0.12; 4) 0.14; 
5) 0 .16.  

Further, it is necessary to take into consideration the fundamental assumptions of the "old" Prandt[ 

mixing-path theory [i], and to remember that the condensing vapor decelerates the upper layers of the mov- 
ing fluid (0u/By < 0). As a result, one arrives readily at a Tolmien-type equation 

F ' " - - F  = 0. (1) 

The  b o u n d a r y - l a y e r  v e l o c i t y  c o m p o n e n t s  c a n  be  e x p r e s s e d  in  t e r m s  of  the  f u n c t i o n  F :  

u : uoF' (~), 
(2) 

v = auo  l ~  F '  ( ~ )  - -  F (~)1, 

w h e r e  u 0 : UflowCOS/3; a i s  the  t u r b u l e n t - s t r u c t u r e  c o e f f i c i e n t  of  the  m i x i n g  l a y e r ;  and ~ : y l a x  i s  a d i -  

m e n s i o n l e s s  c o o r d i n a t e  of  the  b o u n d a r y  l a y e r .  

T h e  s o l u t i o n  of  e q u a t i o n  (1) h a s  t he  f o r m  
_ 

-~ l / 3 2 F :C~e  ~ +C2e ~cos ~ ~+C3e  sin % (3) 

To solve the problem, it is necessary to determine the three constants of integration C I, C2, C3, the 

position of the condensation boundary (angle /3), the boundary layer thickness (q~1), the vapor velocity Vva p, 
and the pressure difference between the gas-filled space and the fluid. 

In the following, subscript 1 refers to values of function F and its derivatives at the lower boundary of 

the mixing layer, and subscript 0 to its values at the condensation boundary. The density of the medium at 

the inner boundary q~ = r is continuous, so that the velocity is also continuous: 

u = uo=~-Fl = 1, (4) 
v : ---uotan[~ :~-tan[} = - -  a [(91 - -  FJ .  (5) 

The relation (5) is derived on the basis of (4). When relations (4) and (5) are satisfied, it follows from 
the condition for the continuity of the momentum flow density across the boundary qh that the turbulent shear- 

ing stresses are zero for ~ = q~l 

au = o ~ F'~ = o. ( 6 )  (~,) = 0--~ ~ ~,~,~, 

At the upper limit of the boundary layer (~ = 0), the condition for the continuity of the mass flow densi- 
ty across the condensation surface must be satisfied 

{puknk} = O. 

Here, and in the following, brackets denote the difference between values on the right and left side of the con- 
densation boundary, n k are the components of the unit vector of the outer normal to the phase transition 
boundary, and u k are the velocity components. After Simple calculations, it is easy to obtain 
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F i g .  3. P l o t  of the h e a t - t r a n s f e r  c o e f f i c i e n t  a vs  K and a (for u = 20 I n / s e c  and 
Cpp = 4.187 "106 J / m  3 -deg  = 1000 k c a l / m  3 . d e g ) .  F o r  1 - 5 ,  s e e  F i g .  2. 

F i g .  4. P l o t  of F"(0)/~01 vs  the hea t  p a r a m e t e r  K: a) d a t a  of  [1]; b) a u t h o r ' s  r e -  
s u l t s .  

u - -  auoFo, (7) 

w h e r e  Y = P v a p / P f l u i d .  

The con t inu i ty  e q u a t i o n  fo r  the m o m e n t u m  flow d e n s i t y  (the in f luence  of  v i s c o u s  s t r e s s e s  is  neg l ec t ed )  

{H~knk} = O, 

w h e r e ,  

leads to two equations: 

II[.k = pu~u k + P61k + pu~uk; 

6ik = 1 for i --  k; 6r = 0 for i =~ k, 

uv q- UV ----. O, 

Pfluid - Pvap = Pvap Vvap - Pfluid Vfluid - Pfluid Vfluid" 

H e r e ,  i t  was  a s s u m e d  tha t  the v a p o r  v e l o c i t y  is  n o r m a l  to the c o n d e n s a t i o n  s u r f a c e  and tha t  the v a p o r -  
f i l l e d  s p a c e  i s  f r ee  of  t u r b u l e n t  p u l s a t i o n s .  Making  use  of  P r a n d f l ' s  h y p o t h e s i s  about  the e x i s t e n c e  of a 
r e l a t i o n s h i p  be tween  R e y n o l d s  s t r e s s e s  and the m e a n  c h a r a c t e r i s t i c s  of the f low [1], and  b e a r i n g  in m i n d  
tha t  0u/By < 0 in the c a s e  u n d e r  c o n s i d e r a t i o n ,  the f i r s t  of the equa t ions  ob ta ined  can  be r e d u c e d  to the f o r m  

- F0 F0 = ~ ; ' .  ( s )  

The  s e c o n d  equa t ion  can  be u s e d  fo r  d e t e r m i n i n g  the p r e s s u r e  jump  a t  the p h a s e  t r a n s i t i o n  b o u n d a r y .  

It r e m a i n s  to e x a m i n e  the con t inu i ty  equa t ion  fo r  the e n e r g y  f low d e n s i t y .  The fo l lowing  cond i t i ons  
a r e  a s s u m e d  to be s a t i s f i e d :  the m o l e c u l a r  hea t  conduc t iv i t y  of  the f lu id  is  n e g l i g i b l e  c o m p a r e d  to the c o n -  
v e c t i v e  conduc t i v i t y ;  d i s s i p a t i v e  p r o c e s s e s  which  l e ad  to a dd i t i ona l  hea t ing  of the f luid p l a y  an i n s i g n i f i c a n t  
r o l e ;  and the k i n e m a t i c  c o m p o n e n t s  in the e x p r e s s i o n  fo r  the to ta l  hea t  c a p a c i t y  a r e  s m a l l  c o m p a r e d  to the 
t h e r m a l  c o m p o n e n t s  (u2/2 + i ~ i) .  U n d e r  t hese  a s s u m p t i o n s ,  we have  the fo l lowing  equa t ion  

{ (puhi + puhi) n h } = O, 

w h e r e  i i s  the s p e c i f i c  en tha lpy  of  the v a p o r  o r  f lu id .  

A l l o w i n g  for  the con t inu i ty  of the m a s s - f l o w  d e n s i t y ,  we e a s i l y  ob ta in  

Vflui d (iva p - ifluid) : cp v' T'~ 

Wi th  the a i d  of s i m p l e  a s s u m p t i o n s  and t r a n s f o r m a t i o n s  s i m i l a r  to t hose  p e r f o r m e d  in [1], the e q u a -  
t ion ob t a ined  can  be r e d u c e d  to the  f o r m  

K Fo = - -  ~ Fo, (9) 
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T A B L E  1. P a r a m e t e r s  of the T u r b u l e n t  L a y e r  at the B o u n d a r i e s  as  

a Func t ion  of Its T h i c k n e s s  gol 

--~, -tan ~ --F(~a) --F(0) K a.10 "~ v n 

0,1 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 

Notc: 

0,O0000~ 
0,000006: 
0,000008: 
0,000017{ 
0,000050~ 
0,000166 
0,000530 
0,00]663 
0,006569 

0,100073 
0,200083 
0,300109 
0,400212 
0,500631 
0,602082 
0,706619 
0,820787 
0,982109 

0,000086 
0,000284 
0,001123 
0,003418 
0,008468 
0,018594 
0,037114 
0,074024 
0,174737 

--F"(O) 
--F"(O) ~'-"'~ 

0,005006( 0,05006 
0,020024 0,1001 
0,045108 0,15036 
0,080419 0,20105 
0,12635 0,2597 
0,183844 0,3064 
0,255298 0,3647 
0,347920 0,4349 
0,500389 0,5583 

20 m/sec; Cp p = 1000 kcal/m 3. deg; a = 0.08. 

0,001711 28,8 
0,00283, 57,5 
0,00747 86,3 

115,5 0,01700 
0,03351 145 
0,06003 176 
0,10176 209 
0,17021 250 
0,31397] 320 

0,23 
0,761 
3,00 
9,14 

22,7 
49,6 
99,4 
198 
466 

TABLE 2. Dimensionless Longitudinal Velocity F"(go) 
and Relative Turbulent Shearing Stress F"2(go) as a Func- 
tion of the Instantaneous Coordinate go for got = -0.9 

--~ F'(~) F"U(~) --~ F'(~) Fn2(~) 

0,1 
0,3 
0,5 

0,7665 
0,8532 
0,930 

0,185 0,7 
0,172 0,9 
0,0966 

0,984 
1 

0,0313 
0 

where 

K _ 

c, (To - -  T,) 

ivap-- i0 

The solution of the problemformulated is physically acceptable for the following constraints: 

i) gol < 0, according to the formulation of the problem; 

2) 3u/3y < 0 :=~ F"(go) < 0 over the entire boundary layer; 

3) u > 0 ==)" F"(go) > 0. 

It is natural to seek the solution of the problem for a given value of the heat parameter K. However, 
owing to the nature of the equations obtained, it is more convenient to take the position of the lower limit 
gol of the mixing layer as the initial parameter. The constants of integration are determined from the sys-  
tem of equations (4), (6), (8), the position of the condensation boundary from Eq. (5), and the vapor velocity 
from Eq. (7). From Eq. (9), one can obtain the corresponding value of K. 

The heat-transfer coefficient for vapor condensation on a cold fluid jet can be calculated from [1]: 

F" (0) 
a = 3600 auocp 9 - -  (10) 

The r e s u l t s  of the compu ta t ion  a r e  c o m p i l e d  in Table  1. The  v a l u e s  of the d i m e n s i o n l e s s  long i tud ina l  v e l o c -  
i ty F'(go) and the r e l a t i v e  v a l u e s  of  the s h e a r i n g  and tu rbu len t  s t r e s s e s  F"2(go) fo r  K = 0.314 and go1 = - 0.9 

a r e  shown in Tab l e  2. 

The condensa t ion  angle  fi is p lo t t ed  vs  the p a r a m e t e r s  K and a in F ig .  2. 

F r o m  Fig .  3, it is e a s y  to o b s e r v e  the combined  in f luence  of the p a r a m e t e r s  K and a on the h e a t -  

t r a n s f e r  c o e f f i c i e n t  a .  

N a t u r a l l y ,  the d i f f e r e n c e  in the f o r m u l a t i o n  of the p r o b l e m s  has r e s u l t e d  (Fig .  4) in a d i s c r e p a n c y  b e -  

tween  our  data  and the r e s u l t s  obta ined  in [1]. 

In c o n c l u s i o n ,  it should  be noted that  condensa t i on  of v a p o r  on a cold  f luid j e t  can  o c c u r  not only at  the s u r -  

face  of the m i x i n g  l a y e r  but a l so  in i ts  c e n t r a l  p o r t i o n s .  It would be thus of i n t e r e s t  to s tudy h e a t - t r a n s f e r  
p r o c e s s e s  in m i x i n g  l a y e r s  wi th  a l lowance  fo r  "bulk" condensa t ion .  
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NOTATION 

the longitudinal velocity component; 
the flow velocity ; 
the transverse velocity component; 
the vapor density; 
the fluid density; 
the vapor pressure; 
the pressure in the fluid; 
the dimensionless coordinate of the mixing layer; 
the condensation angle ; 
the tensor of momentum flow density; 

the heat parameter of the problem; 
the turbulent-structure parameter of the jet; 
the coefficient of heat transfer between vapor and fluid; 
the heat capacity of the fluid; 
the fluid temperature at the condensation boundary; 
the temperature of the main fluid flow; 
the specific enthalpy of the vapor; 
the enthalpy of the fluid at the condensation boundary. 
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